Reaction of sugars with Meldrum's acid: a route to 3,6-an-hydro-2-deoxyaldono-1,4-lactones

Francisca Zamora Mata, Manuel Bueno Martinez, and Juan A. Galbis Perez Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, Sevilla (Spain) (Received March 16th, 1989; accepted for publication, October 30th, 1989)

ABSTRACT

Reactions between Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) and D-xylose, D-glucose, and D-galactose gave mainly 3,6-anhydro-1,4-lactones together with a,\$\beta\$-unsaturated-1,4-lactones. The preparation of 3,6-anhydro-1,4-lactones having the D-xylo, D-gluco, and D-galacto configurations is described.

INTRODUCTION

We have described the reaction of barbituric and 1,3-dimethylbarbituric acids with monosaccharides¹⁻², to give the C-glycosylbarbiturates (1) in good yields, and now report on reactions with Meldrum's acid, 2,2-dimethyl-1,3-dioxane-4,6-dione^{3,4} (p K_a 4.97), the acidity of which is similar to that of the barbituric acids.

RESULTS AND DISCUSSION

The reaction between p-xylose and Meldrum's acid, under the conditions (aqueous solution, pH 7, 80°) used² in the preparation of 1, gave a complex mixture instead of the expected product 2. When the reaction was carried out in N,N-dimethylformamide-triethylamine, column chromatography of the products gave 3 (57%) and 4 (4%).

The structure of 3 was assigned on the basis of its elemental analysis and spectral data, and those of its diacetate 5. Thus, both 3 and 5 had i.r. absorption at 1770 cm⁻¹ characteristic of γ -lactones. The 200-MHz ¹H-n.m.r. spectrum of 5 could be assigned completely (Tables I and II) and confirmed the structure proposed, as did the ¹³C-n.m.r. data (Table III). The ¹H-n.m.r. spectra of the unsaturated lactone 4 and its triacetate 6 also indicated their structures. Thus, 4 had resonances (dd) for olefinic protons at 6.15 and 7.77 p.p.m. The spectrum of 6 indicated the presence of three acetyl protons, and the structure of the acyclic moiety chain could be established completely from the signals for H-5/7.

The reaction of Meldrum's acid with p-glucose and p-galactose gave, as the main products, the 3,6-anhydro-1,4-lactones 7 and 10, respectively. The reaction with p-glucose also yielded a small proportion of the unsaturated lactone 8, and that with

224 F. ZAMORA MATA et al.

D-galactose also gave the bicyclic-1,4-lactone 12. These structures were assigned on the basis of their 1 H- and 13 C-n.m.r. spectra, and those of the respective triacetates (9, 11, and 13). Thus, 10 and 12 gave signals for HO-5 (d), HO-7 (d), and HO-8 (t) that were assigned unequivocally by spin-spin decoupling experiments. The *cis* configurations of the D-glycero-D-ido (7 and 9) and D-glycero-L-gluco (10 and 11) compounds are indicated by their $J_{4.5}$ values (0 Hz), which accord ${}^{5-7}$ with a *trans* arrangement of H-4,5. The *cis*-D-glycero-L-altro configurations assigned to 12 and 13 were based on the $J_{4.5}$ values (4.6 and 4.7 Hz, respectively), which accord with a *cis* arrangement of H-4,5^{6.8,9}.

An attempt was made to confirm the structure of 12 on the basis of the n.m.r. spectra of the tetra-acetates 15 and 17 of the amides 14 and 16, obtained by ammonolysis of 10 and 12, respectively, followed by acetylation. The ¹H-n.m.r. spectra of 15 and 17 could be assigned fully (Tables I and II). The signal for H-3 of 15 appeared at higher field (4.50 p.p.m.) than the corresponding signal of 17 (4.60 p.p.m.). A *trans*-[3.3.0]-bicyclic structure for 12 would lead to an amide similar to 15 but with different "anomeric" configuration at C-3, and the signal for H-3 would appear at higher field ¹⁰ than that for 15.

The formation of 3 and 7 can be explained by the initial formation from D-xylose and D-glucose of 18, which could react via 19 to give the unsaturated lactones 4 and 8 followed by a Michael-type addition to yield 3 and 7. This type of cyclization has been observed in the reaction of sugars with oxalacetaldehyde¹¹ and from the products of other condensation reactions with Meldrum's acid^{12,13}. Likewise, 10 can be formed from D-galactose and 12 via an intermediate lactone with the configuration at C-4 inverted.

Kochetkov and Dmitriev¹⁴ reported the formation of **20** as the main product of the reaction of D-galactose with ethoxycarbonylmethylenetriphenylphosphorane. However, when we performed the reaction using methoxycarbonylmethylenetriphenylphosphorane, the major product was **10**, and **12** and **21** were minor products. The structure of **21** was indicated by its spectral data and those of its tetra-acetate **22**. (Tables I–III). This compound may arise by the addition of HO-6 to the olefinic double-bond of

OR
$$CH_{2}OR$$

$$CH_{2}$$

23. The anomeric configurations of 21 and 22 are assigned tentatively on the basis of the similarity of the ¹H-n.m.r. data of 22 and 15. Compounds 20 and 23, reported by Kochetkov and Dmitriev¹⁴, were not isolated.

EXPERIMENTAL

General. — Solutions were concentrated in vacuo at <40°. Melting points were determinated with a Gallenkamp apparatus and are uncorrected. Optical rotations were measured at 18° with a Perkin–Elmer 141 polarimeter (10-cm cell). T.l.c. (analytical and preparative) was performed on Silica Gel 60 F₂₅₄ (Merck) with detection by u.v. light or charring with sulfuric acid. Column chromatography was performed in the "flash" mode¹⁵. I.r. spectra (KBr discs or solutions in chloroform) were recorded with a Perkin–Elmer 1310 spectrometer. ¹H-N.m.r. spectra (Tables I and II) were recorded with a Bruker WP-80-SY (80.13 MHz), AC-200-E, or Varian XL-200 (200 MHz) instrument, and ¹³C-n.m.r. spectra (Table III) with a Bruker WP-80-SY (20.15 MHz) spectrometer.

TABLEI

¹H-N.m.r. chemical shift data (p.p.m.) for 4-6, 8-13, 15, 17, and 26

Compound	Н-2	Н-2′	Н-3	H-4	Н-5	9-H	Н-7	Н-7	H-8	Н-8′	Others
4 °C	6.15 dd 2.67 dd	2.52 dd	7.77 dd 4.85 td	5.21 dt 4.77 bd	5.31 bd	– 4.00–3.40 m 4.24 m	4.09 dd	4.00 dd			1.92 s (OAc) 1.97 s (OAc)
Q	6.16 dd		7.35 dd	5.07 dt	5.16 dd	5.33 td	4.23 dd	3.98 dd			1.99 s (OAc) 2.07 s (OAc) 2.08 s (OAc)
ŏ	6.19 dd		7.83 dd	5.09 dt	A series and a ser		4.20-3.00 m	11		a la la compression de la company de la comp	Ť
ô o	2.78 dd	2.67 dd	4.99 td	4.84 d	5.60 d	4.28 dd	5.18 ddd		4.56 dd	4.06 dd	2.01 s (OAc) 2.07 s (OAc) 2.09 s (OAc)
104	2.80 dd	2.45 d	4.59 t	4.71 d	4.161	3.65 dd	3.47 m		3	-3.39 m>	4.66 t (OH-8) 4.76 d (OH-7) 4.58 d (OH-5)
11	2.80 m	2.73 d	4.92 s	4.92 s	5.15 d	4.20 t	5.36 ddd		4.24 dd	4.16 dd	2.05 s (OAc) 2.11 s (OAc) 2.13 s (OAc)
12 ⁴	2.86 dd	2.43 dd	4.67 t	4.88 t	4.20 ddd	3.70 dd	3.93 m		3	3.93 m →	4.60 t (OH-8) 4.61 d (OH-7) 5.37 d (OH-5)
13 ⁶	2.83 dd	2.70 dd	4.94 ddd	5.171	4.93 dd	4.22 dd	5.21 ddd		4.28 dd	4.18 dd	2.06 s (OAc) 2.08 s (OAc) 2.14 s (OAc)

2.06 s (OAc) 2.10 s (OAc) 2.12 s (OAc) 2.14 s (OAc) 6.27 bs (NH ₂)	2.04 s (OAc) 2.07 s (OAc) 2.13 s (OAc) 2.14 s (OAc) 6.35 bs (NH ₂)	2.05 s (OAc) 2.10 s (OAc) 2.11 s (OAc) 2.14 s (OAc) 3.70 s (OMe)
4.14 dd	4.17 dd	4.16 dd
4.38 dd	4.32 dd	4.34 dd
5.36 ddd	5.18 ddd	5.34 ddd
3.99 dd	4.21 dd	4.14 dd
5.07 dd	5.27 dd	5.16 dd
5.29 dd	5.52 t	5.10 dd
4.50 ddd	4.60 ddd	4.46 ddd
2.48 dd	2.47 dd	2.70 d
2.57 dd	2.61 dd	2.74 d
15,	17 ^b	22 ¢

 a D₂O at 80.13 MHz. b CDCl₃ at 200 MHz. c (CD₃)₂SO at 80.13 MHz. d (CD₃)₂SO at 200 MHz.

TABLEII

¹H-coupling constants (Hz) for 4-6, 8-13, 15, 17, and 22

Compound	J _{2,2}	J _{2,3}	$J_{2,3}$	J _{2,4}	J _{3,4}	J _{4,5}	J _{5,6}	J _{6,7}	J _{6,7}	J _{7,7}	J _{7,8}	J _{7,8}	J _{R,R}
. 4		5.8		1.9	1.5	5.4							
'n	-18.9	5.5	1.5		4.6	8.0	3.7	4.7	7.0	-11.7			
9		5.8		1.9	1.5	6.7	3.1	0.9	6.2	-11.5			
Š		5.7		1.9	1.5	8.9							
ģ	-18.6	5.1	2.2		4.6	0.0	3.2	9.4			2.4	5.1	-12.2
_p 01	-18.2	5,9	0.0		5.9	0.0	0.9	3.2					
11,	-18.5		0.0			0.0	3.5	3.5			4.9	7.0	-11.6
12 ^d	-18.3	5.8	1.4		4.6	4.6	8.1	9.1					
13^b	-18.9	6.4	1.8		4.7	4.7	8.1	3.3			5.2	6.7	-11.9
12,	-15.2	7.3	5.1		4.0	1.3	3.6	5.9			3.9	7.1	-12.2
11 _p	-15.6	8.1	5.2		3.8	4.7	7.6	3.4			4.8	6.7	-12.0
226		7.4	0.9		4.4	2.4	3.7	4 .8			4.2	7.0	-12.1

^aD₂O at 80.13 MHz. ^bCDCl₃ at 200 MHz. ^c(CD₃)₂SO at 80.13 MHz. ^d(CD₃)₂SO at 200 MHz.

TABLE III

¹³ C-N.m.r. data ^a for 3, 5, 7,	a" for 3, 5, 7,	9-13, 15, 1	, 9-13, 15, 17, 21, and 22	22				-	
Compound	C-1	C-2	C-3.	C-4.	C-5.	.9-J	C-7	C-8	C-2 C-3 C-4 C-5 C-6 C-7 C-8 Me-COO-Me-COO-COO-Me
34	180.2	36.7	6.77	8.68	74.5	82.0	9.09		
žo	174.2	35.5	77.4	85.5	0.77	75.2	61.3		20.3 169.1 20.4 170.2
74	1.77.1	36.1	77.1	1.88	73.1	80.8	69.1	63.9	

							51.1	51.7
169.0 169.5 170.4		169.3 170.1		169.9 170.3	169.3 170.0 170.3	169.2 169.3 169.8 170.2		169.9
20.5		20.2		20.3 20.5 20.6	20.3 20.5	20.0		20.6
63.1	62.8	62.2	62.8	62.4	62.5	62.2	62.6	62.6
2.79	70.1	69.1	8.69	69.5	70.0	69.7	71.3	70.0
73.9	82.8	83.7	80.5	72.9	77.8	71.6	80.2	9.08
77.6	75.5	78.2	71.3	77.1	76.9	72.1	77.2	78.5
85.1	9.06	86.3	83.8	80.3	77.1	76.1	7.67	7.67
77.6	76.8	77.5	76.3	77.9	81.6	7.77	82.9	81.2
35.7	35.7	35.7	37.1	36.3	35.3	36.0	38.2	37.9
174.0	175.8	174.1	176.5	174.3	172.3	172.2	171.6	170.3
8	104	11,	12 ^d	13°	15°	17°	21 _d	222° 170.3

^a At 20.15 MHz, in p.p.m. from Me₄Si; assignments marked may have to be interchanged. ^b In D₂O. ^c In CDCl₃. ^d In (CD₃)₂SO.

230 F. ZAMORA MATA et al.

3,6-Anhydro-2-deoxy-D-ido-heptono-1,4-lactone (3) and 2,3-dideoxy-D-xylo-hept-2-enono-1,4-lactone (4). — A solution of 2,2-dimethyl-1,3-dioxane-4,6-dione (0.36 g, 2.5 mmol), D-xylose (0.37 g, 2.5 mmol), and triethylamine (0.35 mL, 2.5 mmol) in N,N-dimethylformamide (3 mL) was heated for 7 days at 46°, then concentrated under diminished pressure. Column chromatography (6:1 chloroform-methanol) of the residue gave, first, 3 (0.24 g, 57%), isolated as a syrup, $[a]_{\rm b} + 23^{\circ}$, $[a]_{578} + 27^{\circ}$, $[a]_{546} + 27^{\circ}$, $[a]_{436} + 48^{\circ}$ (c 0.5, water), $R_{\rm F}$ 0.46; $v_{\rm max}$ 3600–3200 (OH) and 1770 cm⁻¹ (C=O).

Anal. Calc. for C₇H₁₀O₅: C, 48.27; H, 5.78. Found: C, 47.73; H, 5.72.

The diacetate 5 had m.p. $61-62^{\circ}$ (from ethanol), $[a]_{\rm p} + 59^{\circ}$, $[a]_{578} + 63^{\circ}$, $[a]_{546} + 72^{\circ}$, $[a]_{436} + 122^{\circ}$ (c 0.5, chloroform); $v_{\rm max}$ 1770 and 1720 cm⁻¹ (C=O).

Anal. Calc. for C₁₁H₁₄O₇: C, 51.16; H, 5.46. Found: C, 51.36; H, 5.45.

Eluted second was 4 (0.018 g, 4%), m.p. $126-127^{\circ}$ (from ethanol), $[a]_{D} - 167^{\circ}$, $[a]_{578} - 171^{\circ}$, $[a]_{546} - 193^{\circ}$, $[a]_{436} - 322^{\circ}$ (c 0.5, water), R_{F} 0.24; v_{max} 3440–3250 (OH), 1730 (C=O), and 1590 cm⁻¹ (C=C).

Anal. Calc. for C₇H₁₀O₅: C, 48.27; H, 5.78. Found: C, 48.04; H, 5.80.

The triacetate **6** had m.p. 157–158° (from ethanol); v_{max} 1790, 1780, and 1740 cm⁻¹ (C=O).

Anal. Calc. for C₁₃H₁₆O₈: C, 52.00; H, 5.37. Found: C, 51.86; H, 5.41.

3,6-Anhydro-2-deoxy-D-glycero-D-ido-octono-1,4-lactone (7) and 2,3-dideoxy-D-gluco-oct-2-enono-1,4-lactone (8). — Treatment of D-glucose (0.45 g, 2.5 mmol) as described for D-xylose gave, first, 7 (0.20 g, 40%), m.p. 113–114° (from ethanol), $[a]_{\rm D}$ + 29°, $[a]_{578}$ + 29°, $[a]_{546}$ + 32°, $[a]_{436}$ + 56° (c 0.5, water), $R_{\rm F}$ 0.45; $v_{\rm max}$ 3500–3300 (OH) and 1780 cm⁻¹ (C=O).

Anal. Calc. for C₈H₁₂O₆: C, 47.06; H, 5.92. Found: C, 47.15; H, 6.00.

The triacetate **9** had m.p. 112–113° (from ethanol), $[a]_D + 75^\circ$, $[a]_{578} + 77^\circ$, $[a]_{546} + 86^\circ$, $[a]_{436} + 149^\circ$ (c 0.5, chloroform); v_{max} 1790, 1770, 1740, and 1725 cm⁻¹ (C=O). *Anal.* Calc. for $C_{14}H_{18}O_9$: C, 50.91; H, 5.49. Found: C, 50.89; H, 5.50.

Eluted second was **8** (0.02 g, 4%), m.p. 143–145° (from ethanol), $R_{\rm F}$ 0.25; $\nu_{\rm max}$ 3350–3240 (OH), 1790, 1750 (C=O), and 1595 cm⁻¹ (C=C).

Anal. Calc. for C₈H₁₂O₆: C, 47.06; H, 5.92. Found: C, 47.26; H, 6.00.

3,6-Anhydro-2-deoxy-D-glycero-L-gluco-octono-1,4-lactone (10) and 3,6-anhydro-2-deoxy-D-glycero-L-altro-octono-1,4-lactone (12). — Treatment of D-galactose (1.35 g) as described for D-xylose gave, first, 10 (0.7 g, 45%), m.p. 93–94° (from ethanol), $[a]_D + 27^\circ$, $[a]_{578} + 28^\circ$, $[a]_{546} + 32^\circ$, $[a]_{436} + 54^\circ$ (c 1, water), $R_F = 0.30$; $v_{max} = 3500-3200$ (OH) and 1755 cm⁻¹ (C=O).

Anal. Calc. for C₈H₁₂O₆: C, 47.06; H, 5.92. Found: C, 46.68; H, 5.89.

The triacetate 11 had m.p. 66–67° (from ethanol), $[a]_D + 77^\circ$ (c 1, chloroform); v_{max} 1790 and 1730 cm⁻¹ (C=O).

Anal. Calc. for C₁₄H₁₈O₉: C, 50.91; H, 5.49. Found: C, 50.49; H, 5.27.

Eluted second was **12** (0.10 g, 7%), m.p. 129° (from ethanol), $[a]_{\text{b}} - 122^{\circ}$, $[a]_{578} - 126^{\circ}$, $[a]_{546} - 143^{\circ}$, $[a]_{436} - 239^{\circ}$ (c 0.5, water), R_{F} 0.24; v_{max} 3600–3200 (OH) and 1775 cm⁻¹ (C=O).

Anal. Calc. for C₈H₁₂O₆: C, 47.06; H, 5.92. Found: C, 47.27; H, 5.99.

Triacetate 13, isolated as a colorless syrup, had $[a]_D - 185^\circ$ (c 1, chloroform); v_{max} 1775 and 1735 cm⁻¹ (C=O).

Anal. Calc. for $C_{14}H_{18}O_9$: C, 50.91; H, 5.49. Found: C, 51.00; H, 5.45.

Ammonolysis of 10 and 12. — Ammonia was bubbled for 0.5 h through a methanolic solution containing 10 or 12 (60 mg) at 0°. The solution was kept at 0° for 2 d and then concentrated to a syrup that was acetylated conventionally with acetic anhydride-pyridine to give 4,5,7,8-tetra-O-acetyl-3,6-anhydro-2-deoxy-D-glycero-L-gluco-octonamide (15) or 4,5,7,8-tetra-O-acetyl-3,6-anhydro-2-deoxy-D-glycero-L-altro-octonamide (17) in quantitative yields as colorless syrups. The ¹H- and ¹³C-n.m.r. data are given in Tables I-III.

ACKNOWLEDGMENTS

We thank Drs. J. Fuentes Mota (University of Seville), M. Avalos González, and J. A. Serrano Blázquez (University of Extremadura) for the 200-MHz ¹H-n.m.r. spectra, and the CICYT for financial support (Grant PA86-0218C03-01).

REFERENCES

- J. A. Galbis Perez, M. Avalos Gonzalez, J. L. Jimenez Requejo, and J. C. Palacios Albarran, Carbohydr. Res., 124 (1983) C15-C17.
- 2 M. Avalos Gonzalez, J. L. Jimenez Requejo, J. C. Palacios Albarran, and J. A. Galbis Perez, Carbohydr. Res., 158 (1986) 53-66.
- 3 A. N. Meldrum, J. Chem. Soc., 93 (1908) 598-601.
- 4 D. Davidson and S. A. Bernhard, J. Am. Chem. Soc., 70 (1948) 3426-3428.
- 5 J. A. Galbis Perez, F. Zamora Mata, and P. Turmo Fernandez, Carbohydr. Res., 163 (1987) 132-135.
- 6 J. A. Galbis Perez, J. C. Palacios Albarran, J. L. Jimenez Requejo, and M. Avalos Gonzalez, Carbohydr. Res., 131 (1984) 71–82.
- 7 R. M. Davidson, E. White V, S. A. Margolis, and B. Coxon, Carbohydr. Res., 116 (1983) 239-254.
- 8 H. Fritz, C. Morel, and O. Wacker, Helv. Chim. Acta, 51 (1968) 569-576.
- 9 J. C. Jochims, A. Seeliger, and G. Taigel, Chem. Ber., 100 (1967) 845-854.
- 10 J. A. Montgomery, Carbohydr. Res., 33 (1974) 184-187.
- 11 D. Charon and L. Szabo, J. Chem. Soc., Perkin Trans. 1, (1973) 1175-1179.
- 12 P. Jouin, D. Nisato, and B. Castro, Fr. Pat. 2,584,399 (1987); Chem. Abstr., 107 (1987) 78252f.
- 13 Y. Yamamoto, Y. Morita, and K. Minami, Chem. Pharm. Bull., 34 (1986) 1980-1986.
- 14 N. K. Kochetkov and B. A. Dmitriev, Tetrahedron, 21 (1965) 803-815.
- 15 W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 43 (1978) 2923-2925.